Erzeugung und Nachweis des Silaethens $Ph_2Si = C(SiMe_3)_2^{(1)}$

Nils Wiberg*, Matthias Link und Gerd Fischer

Institut für Anorganische Chemie der Universität München, Meiserstraße 1, D-8000 München 2

Eingegangen am 12. September 1988

Keywords: Silaethenes / Bromotris(silyl)methane derivatives

Bromotrisilylmethane (Me₃Si)₂(Ph₂XSi)CBr (4-13; Tab. 1) entstehen durch Reaktion von $(Me_3Si)_2(Ph_2HSi)CM$ (M = Li, Na) mit Brom bzw. Brom/Chlor (X = H, Cl, Br) sowie durch Reaktion von $(Me_3Si)_2(Ph_2BrSi)CBr$ mit KHF₂ (X = F), H₂O oder MeOH (X = OH, OMe), MeLi (X = Me), $BuLi/Br_2$ (X = Bu), $PhLi/Br_2$ oder $PhLi/PhOLi/Br_2$ (X = Ph, OPh). PhLi, BuLi und tBu₃SiNa reagieren mit den Bromtrisilylmethanen unter Br/M-Austausch zu Verbindungen (Me₃Si)₂(Ph₂XSi)CM, die protolysiert, alkyliert und bromiert werden können [Bildung von $(Me_3Si)_2(Ph_2XSi)CY mit Y = H, R, Br; 4-23, Tab. 1].$ Für X = Halogen existiert das Gleichgewicht (Me₃Si)₂(Ph₂XSi)CM ≠ $Ph_2Si = C(SiMe_3)_2$ (3) + MX. Das Silaethen 3 bildet sich in Et₂O bei $-78 \degree C (X/M = Br/Li)$ bzw. Raumtemperatur (X/M = F/Li, Br/Na) reversibel in kleiner Konzentration, bei höheren Temperaturen irreversibel (Bildung von Folgeprodukten von 3). Die intermediäre Existenz von 3 wurde auf chemischem Wege durch Abfangen von 3 u.a. mit RLi (Bildung von Insertionsprodukten in die R-Li-Bindung), $Ph_2C = NSiMe_3$ (Bildung eines als 3-Quelle dienenden [2 + 4]-Cycloaddukts), tBu_2MeSiN_3 (Bildung eines [2 + 3]-Cycloaddukts) und insbesondere 2,3-Dimethyl-1,3butadien (Bildung von Diels-Alder- und En-Reaktionsprodukten) wahrscheinlich gemacht, wobei in letzterem Falle Produkte und Ausbeuten unabhängig von der 3-Quelle sind. Mit dem Übergang von $Me_2Si = C(SiMe_3)_2$ (1) zu 3 ist keine prinzipielle, sondern nur eine graduelle Änderung der Reaktivität verbunden (3 ist Lewisacider als 1).

Der vor einigen Jahren von uns aufgefundene einfache Zugang (Gl. 1) zum thermolabilen Silaethen 1^{2-4} regte dazu an, auf analogem Wege durch thermische Eliminierung von LiX andere Silaethene zu erzeugen. Mit 2 konnten wir dann in der Folgezeit auf diese Weise eine ungesättigte Siliciumverbindung gewinnen, die sich von 1 durch Ersatz zweier Methyl- gegen sperrige *tert*-Butylgruppen ableitet (2 lagert sich in das bei Raumtemperatur metastabile Silaethen Me₂Si = C(SiMe₃)(SiMetBu₂) um⁵; 1 stabilisiert sich selbst bei tiefen Temperaturen durch Dimerisierung).

Als weitere, durch "thermische Salzeliminierung" gemäß Gl. (1) erzeugbare Substanz stellen wir nachfolgend das Silaethen 3 vor. Seine Synthese interessierte u.a. im Zusammenhang mit der Frage, ob ein Ersatz der beiden Methylsubstituenten am ungesättigten Siliciumatom in 1 durch aromatische Reste ebenfalls zu einer Stabilisierung des ungesättigten Systems führt. Auch sollte geklärt werden, welche Änderungen der allgemeinen Reaktivität (z.B. der Lewis-Acidität) mit einem derartigen Substituententausch im ungesättigten System verbunden sind.

Auf eine mögliche Bildung des Silaethens 3 als reaktives Zwischenprodukt der in Methanol als Solvens durchgeführten Reak-

Generation and Detection of the Silaethene $Ph_2Si = C(SiMe_3)_2^{1}$

Bromotrisilylmethanes (Me₃Si)₂(Ph₂XSi)CBr (4-13; Table 1) are formed by the reaction of $(Me_3Si)_2(Ph_2HSi)CM$ (M = Li, Na) with bromine or with bromine/chlorine (X = H, Cl, Br) and also by treating $(Me_3Si)_2(Ph_2BrSi)CBr$ with KHF_2 (X = F), H₂O or MeOH (X = OH, OMe), MeLi (X = Me), $BuLi/Br_2$ (X = Bu), $PhLi/Br_2$ or $PhLi/PhOLi/Br_2$ (X = Ph, OPh). PhLi, BuLi, and tBu₃SiNa convert the bromotrisilylmethanes by Br/M exchange into compounds (Me₃Si)₂(Ph₂XSi)CM, which may be protolyzed, alkylated, and brominated [formation of (Me₃Si)₂(Ph₂XSi)CY with Y = H, R, Br; cf. 4-23, Table 1]. For X = halogen the equilibrium $(Me_3Si)_2(Ph_2XSi)CM \rightleftharpoons Ph_2Si = C(SiMe_3)_2$ (3) + MX exists. Thereby, silaethene 3 is formed in Et₂O at $-78^{\circ}C(X/M)$ = Br/Li) or at room temperature (X/M = F/Li, Br/Na), respectively, reversibly in low concentrations and at higher temperatures irreversibly (formation of secondary products of 3). The intermediacy of 3 has been established chemically by trapping 3 with (for example) RLi (formation of insertion products in the R-Li bond), $Ph_2C = NSiMe_3$ (formation of a [2 + 4] cycloadduct, which may serve as a source of 3), tBu_2MeSiN_3 (formation of a [2 + 3] cycloadduct), and particularly 2,3-dimethyl-1,3-butadiene (formation of Diels-Alder and ene reaction products). In the last case products and yields are independent of the origin of 3. From $Me_2Si = C(SiMe_3)_2$ (1) to 3 there is only a gradual (but no principal) change of silaethene reactivity (3 is more Lewis acidic than 1).

tion $Ph_2SiHal - C(SiMe_3)_3 + OMe^- \rightarrow Hal^- + Me_3SiOMe + 3$ [Folge: $3 + MeOH \rightarrow Ph_2SiOMe - CH(SiMe_3)_2$] wiesen 1978 Eaborn et al.⁶⁾ hin. 3 ist nach Eaborn et al.⁷⁾ offensichtlich auch Intermediat der unter Me_3SiF-Eliminierung erfolgenden thermischen Zersetzung von $Ph_2SiF - C(SiMe_3)_3$ oberhalb 300°C; es stabilisiert sich unter den Thermolysebedingungen durch Isomerisierung (vgl. hierzu auch Lit.⁸⁾).

$$\begin{array}{c|c} R_{2}\text{Si}-C(\text{SiMe}_{3})_{2} & \xrightarrow{-\text{LiX}} & R & \text{SiMe}_{3} \\ X & \text{Li} & R & \text{SiMe}_{3} \end{array}$$
(1)
$$\begin{array}{c} 1 & 2 & 3 \\ \hline R & \text{Me } t\text{Bu } \text{Ph} \end{array}$$

Die zur Erzeugung von 3 nach Gl. (1) benötigten Verbindungen $(Me_3Si)_2(Ph_2XSi)CLi$ lassen sich mit Vorteil aus bromierten Vorstufen $(Me_3Si)_2(Ph_2XSi)CBr$ durch Reaktion mit Lithiumorganylen gewinnen. Die betreffenden siliciumfunktionellen Bromtrisilylmethane, über deren Darstellung zunächst berichtet wird, stellen somit wichtige Zwischenprodukte auf dem Wege zum Silaethen 3 dar.

Verb	. ^{a)}		Darstellung	Schmp.	1,	h-nmr ^{d)}			¹³ C{ ¹ H}-t	NMR (CDC13) ^{d)}		²⁹ Si-NMR (CDC1 ₃)
Nr.	x	Y	(Ausbeute)	[°c]	c) Me ₃ Si		х	Y	Me3Si	Ph ₂ Si	х	Me ₃ Si
									si3c	i/o/m/p C	Y	Ph ₂ Si
41	F	Br	<u>6</u> + KHF ₂ (89%)	102	E B	0.052d ^{e)} 0.131d ^{e)}	-	-	1.40d ^{e)} 29.99d ^{e)}	135.5d/134.8d 127.8d/130.2d ^{e)}	-	6.00d ^{e)} -13.00d ^{e)}
5	C1	Br	<u>10</u> + C1 ₂	107	T E	0.0914-2	-	-	1.91	135.2/135.7	-	6.70
			(887)		B T	0.168 0.148	-	-	32.06	127.5/130.1	-	-6.33
<u>€</u>	Br	Br	$\frac{10}{(96\%)} + \operatorname{Br}_{2}^{f}$	113	E B T	0.136 0.203 0.216	- -	-	2.33 32.12	134.8/136.5 127.5/130.1	-	6.92 -5.44
<u>7</u>	он	Br	<u>6</u> + H ₂ 0 (93 2)	119	E B T	0.046 0.138 0.053	5.69 2.34 2.63		1.78 32.88	137.2/135.2 127.6/129.7	-	5.22 -19.14
8	OMe	Br	<u>6</u> + MeOH (90 %)	95	E B T	0.079 0.206 0.079	3.69 3.47 3.72	- -	2.00 31.99	135.7/136.4 127.4/129.7	52.88 -	5.35 -14.72
2	OPh	Br	<u>27</u> + PhOLi + Br ₂ (10%)		E B T	0.095 0.215 0.069	տ տ ա	-	1.94 31.93	134.5/136.6 127.4/130.0	g) -	5.98 -20.65
10	Н	Br	$\frac{28}{(737)}$ + Br ₂	98	E B T	0.057 0.112 0.166	5.31 5.44 5.40	-	1.44 30.80	135.9/136.1 127.8/129.8	- -	5.68 -14.53
11	Me	Br	6 + MeLi (95 %)	122	E B T	0.060 0.095 0.101	0.920 0.840 0.980	- -	2.30 32.60	138.0/135.9 127.4/129.2	0.210	5.16 -14.40
<u>12</u>	Bu	Br	<u>6</u> + 2 Buli + Br ₂ (86%)	Ö1	E B T	0.060 0.152 0.088	_h) _h) _h)	-	2.82 33.79	135.4/136.9 127.4/129.3	i) -	5.30 -8.77
13	Ph	Br	6 + 2 PhLi + Br ₂ (95%)	98	E B T	0.098 0.190 0.173	ת ה	- - -	3.28 31.75	136.1/137.8 127.2/129.3	vgl.SiPh ₂ -	5.60 -13.33
14	F	H	<u>26</u> + н ₂ 0 (95%)	55	E B T	0.035d ^{k)} 0.119d ^{k)} 0.039d ^{k)}	- - -		3.00d ^{k)} 4.91d ^{k)}	136.5d/134.3d 127.8d/130.0d ^{k)}	-	-0.01 ^{k)} 6.30 ^{k)}
15	Br	н	$\frac{27}{(1007)}$ + HBr ¹⁾	fest	E B T	0.019 0.089 0.080	- - -	0.477 0.421 0.532	2.98 5.10	136.7/134.6 127.8/129.9	-	0.83 9.41
16	он	н	27 + H ₂ 0 (787)	80	E B T	-0.005 0.094 0.047	5.00 1.89 2.26	-0.005 0.067 0.134	3.21 4.56	139.4/134.2 127.6/129.3	-	-0.05 -4.47
1 <u>7</u> 6)	OMe	н	2 <u>7</u> + MeOH (837)	ö1	E B T	0.019 0.147 0.063	3.48 3.33 3.50	0.112 0.147 0.156	3.28 4.19	136.9/135.3 127.6/129.4	51.36 -	-0.19 -2.68
18	OPh	н	27 + PhOLi + MeOH (65%)	80	E B T	0.076 0.173 0.208	m m m	0.240 0.272 0.369	3.32 5.38	136.4/135.3 127.6/129.7	m) 	6.11 -5.04
12	н	н	28 + Н ₂ 0 (85%)	42	E B T	0.019 0.094 0.113	5.06 ⁿ⁾ 5.29 ⁿ⁾ 5.18 ⁿ⁾	-0.063 ⁿ⁾ 0.146 ⁿ⁾ 0.046 ⁿ⁾	2.69 0.16	136.6/135.5 127.8/129.2	-	0.99 -15.22

Tab. 1. Darstellung sowie Kenndaten einiger Verbindungen des Typs (Me₃Si)₂(Ph₂XSi)CY^{a)}

Verb. ^{a)}			Darstellung	Schmp.	I _{H-NMR} b)			$13_{C\{1_{H}\}-NMR} (CDC1_{3})^{d}$		29 Si-NMR (CDC13	
Nr.	x	Y	(Ausbeute)	[°c]	c) Me ₃ Sí	x	Y	Me ₃ Si Si ₃ C	Ph ₂ Si i/o/m/p C	X Y	Me ₃ Si Ph ₂ Si
<u>20</u>	Me	н	<u>27</u> + MeLi,	68	E -0.060	0.774	0.060	3,19	140.2/135.5	-2.31	0.17
			+ MeOH (95%)		B 0.010 T -0.062	0.735 0.786	0.133 0.049	1.35	127.6/128.6	-	-9.46
21	Bu	н	<u>6</u> + 2 BuLi	Ö1	E -0.010	"o)	0.002	3.69	138.6/135.5	p)	0.20
			- MeOH (66%)		в 0.078 Т0.013	ກ ວ) ກວ)	0.005 0.023	1.48	127.5/128.8	-	-7.18
22	Ph	н	6 + 2 PhLi	80	E -0.056	m	0.255	1.00	137.5/136.3	-	0.20
			- + МеОН (80%)		в 0.064 Т-0.056	m m	0.321 0.259	3.52	127.5/129.0	-	-10.14
<u>22</u>	с,н, ^{q)}	н	<u>6</u> + BuLi (17⊼)	Ö1	E -0.014	 ۲)	0.054	3.65	138.0/135.4	s)	0,17
	4 /				B 0.064 T -0.012	_m r) mr)	0.103 0.058	1.55	127.5/128.9	-	-6.94
24	Me	Me	<u>6</u> + 2 MeLi	104	E -0.072	0.823	1,60	1.22	139.6/135.4	-1.40	4.45
			~ (95 <u>%</u>)		B -0.019 T 0.079	0.773 0.992	1.52 1.74	0.53	127.5/128.7	15.31	-11.52
25	Bu	Bu	6 + 2 BuLi	Ö1	E 0.048	mt)	"t)	3.78	137.1/137.0	u)	2.58
ĒÈ			(29%)		B 0.172 T 0.093	mt) mt)	mt) mt)	8.96	127.1/128.7	u)	-7.24
26	F	Li	4 + PhLi	w)	E -0.114d ^{v)}	-	-	7.40d ^{v)}	143.9d/135.3d	-	-10.26^{v}
<u>27</u>	Br	Li	(100%) 6 + PhLi (100%)	w)	E -0.155	-	-	v)	127.34/120.74	_	- , , , ,
28	н	м	Ph ₂ SiHCl + M	w)	THF -0.160	5.18	(M = Li)				
			+ (Me ₃ Si) ₂ CBr ₂ (100%)		THF -0.101	-	(M = Na)				

Tab. 1 (Fortsetzung)

^{a)} (Me₃Si)₂(Ph₂XSi)CY mit X = F, Cl, Br, I, OMe, H und Y = SiMe₃ vgl. Lit.⁶⁾. - ^{b)} Singuletts, wenn nicht anderes vermerkt, Aromatenmultipletts der Ph₂Si- (Ph₃Si) Gruppen im Bereich δ = 7.0-7.5 (*m*., *p*-H) und 7.5 – 8.2 (*o*-H). - ^{e)} Solvenzien: E = Diethylether, B = Benzol (C₆D₆), T = Trichlormethan (CDCl₃), THF = Tetrahydrofuran. - ^{d)} Signalzuordnung u.a. über ¹H-Off-Resonance-entkoppelte ¹³C-NMR-Spektren. - ^{e)} J_{HF} = 0.7 Hz; J_{CF} = 1.0 (SiMe₃), 20.0 (Si₃C), 14.2/3.9/1.0/klein Hz (SiPh₂); J_{SiF} = 0.4 (SiMe₃), 285 Hz (SiPh₂). ¹⁹F-NMR (CDCl₃): δ = -1600. - ⁿ Darstellung kann ohne Isolierung von **28** und **10** aus Ph₂SiHCl, (Me₅Si)₂CBr₂, Li oder Na nach Gl. (3) erfolgen: 38% (Li), 51% (Na). - ^{g)} 155.2/119.9/129.2/121.3 (*i*,*o*,*m*,*p*-C). - ^{h)} E: 0.822 (SiCH₂), verdeckt (C₃H₇); B: 0.792 (SiCH₂), 1.15 - 1.69 (C₃H₇); T: 0.873 (SiCH₂), 1.21 - 1.66 (CH₂CH₂), 1.24 (CH₃). - ⁱⁱ 14.90 (SiCH₂), 26.70/26.88 (2 - CH₂ -), 13.68 (CH₃). - ⁱⁱ J_{HF} = 0.6 Hz; J_{CF} = 1.0 (SiMe₃), 13.2 (Si₃C), 17.1/2.0/klein/klein Hz (SiPh₂); J_{SiF} = 3.4 (SiMe₃), 283 Hz (SiPh₂); ⁱ⁹F-NMR (CDCl₃): δ = -156.8 (J_{4HF} = 9.8 Hz). - ⁱⁱ Auch aus **28** + HCl oder **19** + Br₂. - ^{mii} 155.3/120.0/129.1/121.0 (*i*/*o*/*m*/p-C). - ^{mi} Li.99 (SiCH₂), 2.701/27.05 (2 - CH₂ -), 13.75 (CH₃). - ^{qi} CH₂CH₂CH = CH₂. - ⁿ E: verdeckt (SiCH₂CH₂), 5.88 (-CH =), 4.82/4.96 (=CH₂); B: 1.39 (SiCH₂), 2.23 (-CH₂ -), 5.91 (-CH =), 4.92/5.07 (=CH₂); T: 1.31 (SiCH₂), 2.17 (-CH₂ -), 5.94 (-CH =), 4.89/5.04 (=CH₂). - ^{si} 15.50 (SiCH₂), 2.883 (-CH₂ -), 14.6 (-CH =), 14.92/5.07 (=CH₂); T: 1.31 (SiCH₂), 2.17 (-CH₂ -), 5.94 (-CH =), 4.89/5.04 (=CH₂). - ^{si} 15.50 (SiCH₂), 2.883 (-CH₂ -), 1.10 - 1.66 (2 CH₂CH₂, CH₃ von SiBu), 2.16 (CCH₂), 0.860 (CH₃ von CBu), verdeckt (2 CH₂CH₂, CH₃ von CBu), 1.07 - 1.62 (2 CH₂CH₂), 1.18 (CH₃), 2.0^{si} (CH₃). - ^{vi} H_i (hein (breites Signal); ¹³C-(^{9S}Si

Darstellung und Charakterisierung einiger Bromtrisilylmethane $(Me_3Si)_2(Ph_2XSi)CY (Y = Br)$ und verwandter Verbindungen (Y = H, Alkyl)

Verbindungen des Typs $(Me_3Si)_2(Ph_2XSi)CBr$ entstehen nach Gl. (2) aus der Dibromverbindung **6** durch Reaktion mit protonenaktiven Stoffen HX (z.B. H₂O, MeOH) oder Alkalimetallsalzen MX sowie Lithiumorganylen (vgl. hierzu Tab. 1, Lit.³⁾ und weiter unten). Die Verbindung **6** ist ihrerseits wie **5** nach Gl. (3) auf dem Wege über Ph₂SiH – CM-

 $(SiMe_3)_2$ (28; M = Li, Na) und Ph₂SiH – CBr(SiMe_3)₂ (10) zugänglich.

In Tab. 1 sind die von uns synthetisierten Bromtrisilylmethane $(Me_3Si)_2(Ph_2XSi)CBr$ zusammen mit der Darstellung sowie einigen Kenndaten aufgeführt. Es handelt sich um farblose, kristalline bzw. ölig-flüssige (X = Bu), in organischen Solvenzien gut lösliche Verbindungen, die unter Normalbedingungen thermisch sowie gegen Luft stabil und selbst im Falle 4-6 nicht hydrolyseempfindlich sind. Ĥ

$$\begin{array}{ccc} Ph_{2}Si-C(SiMe_{3})_{2} & \xrightarrow{+ Hx \text{ oder } MX} & Ph_{2}Si-C(SiMe_{3})_{2} & (2)\\ Br Br & & & HBr \text{ oder } MBr & & \\ 6 & & & & & \\ 6 & & & & & & \\ 1. + M, - MCI, & & \\ Ph_{2}SiCI + BrC(SiMe_{3})_{2} & \xrightarrow{- 2 MBr} & Ph_{2}Si-C(SiMe_{3})_{2} & (3) \end{array}$$

Tab. 1 enthält zudem Darstellung und Kenndaten einiger ebenfalls farbloser, kristalliner bzw. ölig-flüssiger (X = Butyl, Butenyl, OMe) Verbindungen des Typs (Me₃Si)₂(Ph₂XSi)CY (Y = H, Alkyl, Li; vgl. hierzu auch nächstes Unterkapitel).

Bemerkungen zu den NMR-Daten (vgl. Tab. 1) der Trisilvimethane $(Me_3Si)_2(Ph_2XSi)CY$ (Y = Br, H, Alkyl). 'H-NMR: Wie im Falle der Trisilylmethane (Me₃Si)₂(Me₂XSi)CY³⁾ liegt auch im Falle von (Me₃Si)₂(Ph₂XSi)CY das Me₃Si-Signal der Verbindungen mit Y = H bei höherem Felde als das der Verbindungen mit Y = Br. Das CH-Signal von (Me₃Si)₂(Ph₂XSi)CH erscheint bei tieferem Felde als bei (Me₃Si)₂(Me₂XSi)CH (gleiches X). Man beobachtet zudem Tieffeldverschiebung des CH-Signals (i) im Falle von $(Me_3Si)_2(R_2XSi)CH$ (R = Ph, Mc) nach Ersatz eines in der Reihe H/Alkyl/OMe/OPh, Ph, Br links- durch einen rechts-stehenden Substituenten X und (ii) im Falle von $(Me_3Si)_2(Ph_nMe_{3-n}Si)CH$ mit steigendem n (vgl. Tab. 1 und Lit.³). Von den beiden Multipletts der Phenylprotonen ist das der m- und p-Wasserstoffe im Bereich $\delta = 7.0 - 7.5$ lagemäßig wenig, das der o-Wasserstoffe im Bereich $\delta = 7.5 - 8.2$ stärker von X und Y abhängig. – ¹³C-NMR: Die Me₃Si- und Ph₂Si-Signallagen der Verbindungen (Me₃Si)₂(Ph₂XSi)-CY werden durch X und Y weit weniger als die CY-Signallagen beeinflußt (der Einfluß von Y ist im letzteren Falle sehr groß) (vgl. Tab. 1). ²⁹Si-NMR: Die Lage des Me₁Si-Signals der Verbindungen (Me₃Si)₂(Ph₂XSi)CY wird durch X weniger als durch Y beeinflußt (Hochfeldverschiebung beim Ersatz von Y = Br durch Y = Alkylund insbesondere Y = H). Im Falle des Ph₂Si-Signals bewirkt X in der Reihenfolge X = Br < Cl < F < OMe < OH < OPhund X = Bu < Me, Ph, H zunehmende Hochfeldverschiebung. Entsprechendes bewirkt ein Ersatz von Y = H durch Y = Alkylund insbesondere Y = Br.

Erzeugung des Silaethens $Ph_2Si = C(SiMe_3)_2$ (3)

Lithiumorganische Verbindungen RLi (R = z. B. Me, Bu, Ph) reagieren mit den Bromtrisilylmethanen (Me₃Si)₂(Ph₂-XSi)CBr in Diethylether oder Tetrahydrofuran (THF) bei -78 °C und darunter ähnlich wie mit den Bromtrisilylmethanen (Me₃Si)₂(Me₂XSi)CBr³) unter Br/Li-Austausch (Gl. 4a). In entsprechender Weise führt die Umsetzung von tBu₃SiNa mit (Me₃Si)₂(Ph₂BrSi)CBr in Et₂O/THF bei -78 °C unter Br/Na-Austausch zu tBu₃SiBr und (Me₃Si)₂-(Ph₂BrSi)CNa. Die gemäß Gl. (4a) gebildeten Lithiumverbindungen (Me₃Si)₂(Ph₂XSi)CLi mit X = Halogen (vgl. Tab. 1) sind thermolabil; sie zersetzen sich im Sinne der Gl. (1) unter LiX-Eliminierung in das Silaethen 3 (Gl. 4b). welches sich seinerseits im Zuge seiner Bildung in stabilere Folgeprodukte umwandelt (vgl. hierzu auch Lit.³⁾. Analoges gilt für (Me₃Si)₂(Ph₂BrSi)CNa. (Bezüglich des Nachweises der intermediären Existenz von 3 vgl. nachstehendes Unterkapitel, bezüglich der thermischen Stabilisierung von 3 weiter unten und Lit.⁸⁾)

Die Lithiumverbindungen $(Me_3Si)_2(Ph_2XSi)CLi (X = Ha$ logen) sind weniger thermolabil als entsprechende Verbin $dungen <math>(Me_3Si)_2(Me_2XSi)CLi$ (jeweils gleiches X), wobei in beiden Reihen die Bromverbindungen (X = Br) instabiler sind als die Fluorverbindungen (X = F). Beispielsweise zersetzt sich $(Me_3Si)_2(Ph_2FSi)CLi$ (26, haltbar bei Raumtemp.) erst ab ca. 50 °C und $(Me_3Si)_2(Ph_2BrSi)CLi$ (27, haltbar bei -78 °C) ab ca. -50 °C, während $(Me_3Si)_2(Me_2XSi)CLi$ bei Raumtemperatur (X = F) bzw. -78 °C (X = Br) unter Bildung von Folgeprodukten des Silaethens $Me_2Si = C(SiMe_3)_2$ (1) zerfällt (Solvens jeweils Et_2O)⁴⁾. Stabiler als 27 in Et_2O ist nicht nur 26 in Et_2O , sondern auch 27 in THF bzw. $(Me_3Si)_2(Ph_2BrSi)CNa$ in Et_2O/THF (Zerfall um Raumtemp.), während 26 in Benzol instabiler ist als 26 in Et_2O .

Die Lithiumorganyle $(Me_3Si)_2(Ph_2XSi)CLi$ (X = Halogen, OR, H, Organyl) sind sehr hydrolyseempfindlich und reagieren mit protonenaktiven Substanzen HZ rasch unter Bildung von (Me₃Si)₂(Ph₂-XSi)CH und LiZ bzw. unter Bildung von (Me₃Si)₂(Ph₂ZSi)CH und LiX. So wird etwa $(Me_3Si)_2(Ph_2FSi)CLi$ (26) durch HZ = HOH unter Li/H-Austausch in 14 übergeführt, (Me₃Si)₂(Ph₂BrSi)CLi (27) durch HZ = HBr unter Li/H-Austausch in 15 bzw. durch HZ = HOH oder HOMe unter Li/H- sowie X/Z-Austausch in 16 oder 17 und $(Me_3Si)_2(Ph_2XSi)CLi$ (X = H, Me, Bu, Ph) durch HZ = HOMe unter Li/H-Austausch in 19-22. Ähnlich leicht wie die Protonierung erfolgt die Bromierung von (Me₃Si)₂(Ph₂XSi)CLi (X = H, Me, Bu, Ph) zu $(Me_3Si)_2(Ph_2XSi)CBr (10-13)$. Auch wird (Me₃Si)₂(Ph₂MeSi)CLi durch MeBr selbst bei - 78 °C rasch alkyliert (Bildung von 24), während sperrigeres BuBr erst bei Raumtemperatur hinsichtlich (Me₃Si)₂(Ph₂BuSi)CLi alkylierend wirkt (Bildung von 25). Bezüglich einiger Kenndaten der durch Protonierung und Alkylierung gewonnenen Verbindungen 14-25 vgl. Tab. 1.

Außer unter Br/Li-Substitution (Gl. 4a) vermögen Lithiumorganyle RLi (R z.B. = Me, Bu, Ph) mit Bromtrisilylmethanen (Me₃Si)₂(Ph₂XSi)CBr (X = Halogen) zusätzlich unter X/R-Austausch zu reagieren (Bildung von (Me₃Si)₂-(Ph₂RSi)CBr, vgl. hierzu Lit.³). So entstehen bei langsamer Zugabe äquimolarer Mengen MeLi, BuLi bzw. PhLi zu einer auf -78 °C gekühlten Lösung von (Me₃Si)₂(Ph₂BrSi)-CBr (6) in Et₂O die Bromtrisilylmethane 11, 12 bzw. 13 zu 100, 34 bzw. 0% (die mit BuLi erhaltenen Lösungen, welche neben BuBr die Verbindungen 27 und 12 enthalten, sind stabil: 12 verwandelt sich — offensichtlich unter Mitwirkung von $27 - in 23^{8}$).

Der eigentliche Substitutionsschritt des X/R-Austauschs besteht nicht in einer assoziativ-aktivierten Verdrängung von X⁻ in $(Me_3Si)_2(Ph_2XSi)CBr$ (X = Halogen) durch R⁻ (S_N2-Reaktion; vgl. Gl. 4e), sondern in einer dissoziativ-aktivierten Substitution von X⁻ in (Me₃Si)₂(Ph₂XSi)CLi durch R⁻ im Sinne der Gl. (4b, c). Benötigtes (Me₃Si)₂(Ph₂XSi)CLi bildet sich zunächst gemäß Gl. (4a). Daraus durch X/R-Austausch hervorgehendes (Me₃Si)₂(Ph₂RSi)CLi wird dann anschließend von nicht umgesetztem (Me₃Si)₂(Ph₂XSi)CBr unter Li/Br-Austausch in (Me₃Si)₂(Ph₂RSi)CBr verwandelt. Für diesen Substitutionsmechanismus spricht insbesondere der Befund, daß bei der Umsetzung von (Me₃Si)₂(Ph₂XSi)CBr mit RLi in Anwesenheit von Silylaziden als sehr guten "Fängern" für das Silaethen 3 – anders als in Abwesenheit – keine X/R-Austauschprodukte entstehen, sondern [2+3]-Cycloaddukte der Azide mit 3⁸⁾. Somit muß der X/R-Austausch über freies Silaethen 3 verlaufen, das gemäß Gl. (4b) durch LiX-Eliminierung aus (Me₃Si)₂(Ph₂XSi)CLi entsteht und gemäß Gl. (4c) unter RLi-Addition weiterreagiert.

Die lithiumorganischen Verbindungen RLi wirken hiernach – wie viele andere Stoffe (vgl. nachfolgendes Unterkapitel sowie Lit.⁸⁾) – als Fänger für 3: sie entziehen als aktive 3-Reaktanden das Silaethen 3 dem Gleichgewicht (4c). Gibt man dementsprechend zu einer auf -78 °C gekühlten etherischen Lösung von (Me₃Si)₂(Ph₂BrSi)CBr (6) RLi (R = Me, Bu, Ph) in doppelt-stöchiometrischer Menge, so entsteht quantitativ (Me₃Si)₂(Ph₂RSi)CLi (als Folge der Reaktion von 6 mit MeLi wird letztendlich 24 erhalten, da gebildetes (Me₃Si)₂(Ph₂MeSi)CLi von gleichzeitig gebildetem MeBr bereits bei -78 °C – wie weiter oben ausgeführt – rasch alkyliert wird).

Der im Hinblick auf die $(Me_3Si)_2(Ph_2XSi)CM$ -Synthese (X = Halogen; M = Alkalimetall) unerwünschte X/R-Austausch läßt sich - wie auch Untersuchungen an (Me₃Si)₂(Me₂XSi)CM lehren³⁾ durch "Metallierung" von (Me₃Si)₂(Ph₂XSi)CBr (i) bei niedrigen Temperaturen (Verschiebung des Gleichgewichts (Me₃Si)₂(Ph₂XSi)-CM ≥ 3 + MX auf die linke Seite), (ii) unter Verwendung verdünnter RM-Lösungen (langsames Zutropfen von RM zu den (Me₃Si)₂-(Ph₂XSi)CBr-Lösungen und (iii) mit rasch unter Br/Li-Austausch und/oder langsam mit 3 reagierenden Metallorganylen RM zurückdrängen (PhLi lithiiert rascher als BuLi³⁾; tBu₃SiNa bildet aus sterischen Gründen kein Substitutionsprodukt; sperriges tBuLi ist weniger geeignet, weil die im Zuge des Br/Li-Austauschs erzeugten Produkte, (Me₃Si)₂(Ph₂XSi)CLi und tBuBr, unter Bildung von $(Me_3Si)_2(Ph_2XSi)CH$, LiBr und $Me_2C = CH_2$ weiterreagieren können^{3,9)}. Da mit dem Ersatz eines Solvens durch ein basischeres Lösungsmittel ($C_6H_6 < Et_2O < THF$) die Metastabilität von (Me₃-Si)₂(Ph₂XSi)CLi wächst (s. weiter oben), erhöht sich darüber hinaus bei Umsetzungen von (Me₃Si)₂(Ph₂XSi)CBr mit RLi in Medien steigender Basizität das Ausmaß des Br/Li-Austausches zu Ungunsten des X/R-Austausches (z.B. erfolgt die Lithiierung von 6 mit MeLi bzw. BuLi in Et₂O zu 0 bzw. 66%, in THF zu 57 bzw. 100%).

Nachweis des Silaethens $Ph_2Si = C(SiMe_3)_3$ (3)

Für eine intermediäre Bildung von 3 im Zuge der thermischen Zersetzung von $(Me_3Si)_2(Ph_2XSi)CM$ (X = Halogen, M = Alkalimetall) spricht der Befund, daß sich 3 durch geeignete Reaktanden abfangen läßt. Als Beispiel sei die Reaktion mit 2,3-Dimethyl-1,3-butadien (DMB) näher besprochen [für zahlreiche weitere, 3 beweisende Abfangreaktionen vgl. Umsetzungen von 26, 27 mit RLi, tBu_2MeSiN_3 , Ph₂C = NSiMe₃ (Exp. Teil) sowie Lit.⁸¹]: Zersetzt man (Me₃Si)₂(Ph₂XSi)CLi (26, 27) in Anwesenheit von DMB bei 50 °C (X = F) bzw. -78 °C (X = Br), so entstehen die Verbindungen 30 - 32 (Gl. 5). Die Bildung letzterer Produkte läßt sich in einfacher Weise über eine En-Reaktion des Silaethens 3 mit DMB (Gl. 5a, Produkt 31) bzw. über eine [2 + 4]-Cycloaddition von 3 mit DMB oder mit 31 (Gl. 5a oder c; Produkte 30 oder 32) interpretieren.

Der in Gl. (5) postulierte Mechanismus wird dadurch gestützt, daß die Produkte 30-32 unabhängig von der Art der 3-Quellen entstehen. Beispielsweise bilden sie sich auch bei der thermischen Zersetzung einer etherischen Lösung von 29 bei 100°C in Anwesenheit von DMB nach Gl. (5c) (vgl. Exp. Teil sowie Lit.^{8,10}). Zersetzt man hierbei unterschiedliche 3-Quellen (z. B. 27 oder 29) unter gleichen Bedingungen (übereinstimmende Eduktkonzentrationen, Reaktionstemperaturen, Solvenzien), so bilden sich 30-32 zudem in gleichem Ausbeuteverhältnis¹¹). Letzteres Ergebnis deutet auf die Bildung jeweils der gleichen Reaktionszwischenstufe, nämlich 3.

Der Nachweis der intermediären Existenz von 3 im Zuge des Zerfalls von $(Me_3Si)_2(Ph_2XSi)CLi (X = Halogen)$ läßt sich auf kinetischem Wege wegen der Komplexität des Reaktionsgeschehens (s. weiter unten) weniger leicht führen. Zwar erfolgt der Zerfall der betreffenden 3-Quellen in Anwesenheit von Silaethenfängern näherungsweise nach erster Reaktionsordnung; doch steigt die Geschwindigkeit des Zerfalls mit der Aktivität der Fänger (z. B. DMB < tBu₂MeSiN₃ < PhLi)^{8,13)}. Auch zersetzt sich (Me₃Si)₂(Ph₂-XSi)CLi nach höherer als der ersten Ordnung.

Abschließende Bemerkungen

Das oben und an anderer Stelle^{4,9)} besprochene zusammenfassend und weiterführend läßt sich abschließend fol-

gendes zur Thermolyse von Verbindungen des Typs $(Me_3Si)_2(R_2XSi)CLi = R'Li (R = Organylrest; X = Halo$ gen) bemerken: Lösungen von R'Li enthalten jeweils auch geringe Gleichgewichtsmengen an Silaethenen $R_2Si = C$ -(SiMe₃)₂ und LiX. Mit steigender Temperatur wachsen die Anteile an Silaethenen und LiX; sie sind schließlich so hoch, daß sich die Silaethen-Folgeprodukte (vgl. unten und Lit.^{4,8}) meßbar rasch bilden. Die Metastabilität von R'Li hängt also nicht nur von der Geschwindigkeit der Silaethenstabilisierung ab, sondern zudem von der durch X, R, das Solvens sowie die Temperatur bestimmten Lage des Gleich-verschiebung in Richtung R'Li ist wohl dafür mitverantwortlich, daß die Verbindungen (Me₃Si)₂(R₂XSi)CLi in THF langsamer als in Et_2O thermolysieren (jeweils gleiches R, X) bzw. daß die Verbindungen (Me₃Si)₂(R₂XSi)CLi mit X = F langsamer als solche mit X = Br (jeweils gleiches R) oder Verbindungen mit R = Ph langsamer als solche mit R =Me (jeweils gleiches X) zerfallen. Somit besagt der Befund, daß sich (Me₃Si)₂(PhXSi)CLi weniger rasch zersetzt als (Me₃Si)₂(Me₂XSi)CLi (gleiches X, gleiche Reaktionsbedingungen) in Beantwortung einer eingangs gestellten Frage nicht notwendigerweise, daß das Silaethen 3 metastabiler ist als 1; ebensogut könnte 3 als stärkere Lewis-Säure das Anion X⁻ fester als 1 binden, womit (Me₃Si)₂(Ph₂XSi)CLi weniger leicht als (Me₃Si)₂(Me₂XSi)CLi in Silaethen und LiX dissoziieren würde (bezüglich der Lewis-Acidität von 1 vgl. Lit.¹⁵⁾).

Mit vielen Reaktanden (z.B. DMB, R_3SiN_3 , RLi, Ph₂C = NSiMe₃; s.oben und Lit.^{8,16}) zersetzt sich das im Gleichgewicht mit R'Li stehende Silaethen zu *Silaethen-Ab*fangprodukten um. Die Bildung der Fängerprodukte erfolgt in den betreffenden Fällen also rascher, d.h. bereits bei kleinerer Konzentration des mit R'Li im Gleichgewicht stehenden Silaethens als die Bildung der Silaethen-Folgeprodukte.

Die Abfangreaktionen von 1 und 3 führen – nach bisherigen Ergebnissen – zu vergleichbaren Produkten; unterschiedlich sind aber die relativen Produktbildungsgeschwindigkeiten. Somit läßt sich in Beantwortung einer weiteren eingangs gestellten Frage sagen, daß der Übergang von 1 nach 3 nicht mit einer prinzipiellen, sondern nur mit einer graduellen Änderung der Silaethen-Reaktivität verbunden ist. Beispielsweise führt die Einwirkung von DMB auf 1 bzw. 3 übereinstimmend zu einem Diels-Alder- sowie En-Reaktionsprodukt. Während jedoch 1 mit DMB bevorzugt unter [2 + 4]-Cycloaddition reagiert, setzt sich 3 und DMB umgekehrt bereitwilliger unter En-Reaktion um¹⁷⁾. Dies deutet im Sinne bisheriger Untersuchungen¹⁸⁾ auf eine Erhöhung der Doppelbindungspolarität, d.h. der Lewis-Acidität beim Übergang von 1 nach 3.

Die Bildung der Silaethen-Abfangprodukte erfolgt umso rascher, d.h. bei umso geringerer Konzentration des im Gleichgewicht mit R'Li stehenden Silaethens, je höher der Überschuß des Silaethen-Fängers und je aktiver der Fänger hinsichtlich des Silaethens ist. Beispielsweise wächst im Falle der Umsetzungen von (Me₃Si)₂(Ph₂XSi)CBr mit RLi zu (Me₂Si)₂(Ph₂XSi)CLi bei gegebenen Temperaturen der prozentuale Anteil an X/R-Austauschprodukten (also die Geschwindigkeit der Reaktion von 3 mit RLi) mit der Zutropfgeschwindigkeit von RLi zur (Me₃Si)₂(Ph₂XSi)CBr-Lösung, d.h. der lokalen RLi-Konzentration; auch steigt er in der Reihe PhLi < BuLi < MeLi, was auf eine Reaktivitätszunahme der Fänger in Richtung PhLi < BuLi < MeLi deutet¹⁹.

Wir danken der Deutschen Forschungsgemeinschaft für die Förderung der Untersuchungen mit Personal- und Sachmitteln. Herrn M. Rogalli danken wir für die Beteiligung an einigen Experimenten.

Experimenteller Teil

Alle Untersuchungen wurden unter Ausschluß von Wasser und Luft durchgeführt. Nach Literaturvorschriften wurden dargestellt: tBu_3SiNa^{20} , $Ph_2C = NSiMe_3^{21}$. Spurenweise in 2,3-Dimethyl-1,3butadien (DMB) enthaltene und mit 3 rascher als DMB reagierende Verunreinigungen (insbesondere (tBu)MeC=O) wurden durch 2std. Erhitzen von DMB mit wenig $1 \cdot Ph_2C = NSiMe_3$ ($\triangleq 29$ mit SiMe₂ anstelle von SiPh₂)^{10,13)} auf 100 °C in schwerer flüchtige Produkte von 1 mit den Verunreinigungen übergeführt und reines DMB durch Abkondensation gewonnen.

NMR-Spektren: Jeol FX 90 Q, δ -Werte gegen internes TMS (¹H, ¹³C) bzw. externes TMS (²⁹Si). – Die Produkttrennungen erfolgten in einigen Fällen durch HPLC mit einem Gerät 830 der Firma Du Pont (Detektion durch UV bei 230 nm, durch Refraktometrie) sowie mit einem Gerät 600 der Firma Waters (Detektion durch UV bei 230 nm).

Molekülmassen (Tab. 2) sowie Zusammensetzungen der isolierten Verbindungen wurde anhand des M⁺-Peaks sowie dessen Isotopenmuster massenspektrometrisch (Varian CH 7) überprüft. C,H-Analysen einer Reihe von isolierten Verbindungen (lassen sich wegen Ph₂Si schlecht verbrennen) enthält Tab. 2.

Darstellung von Chlordiphenylsilan, Ph₂SiHCl: Man tropft zu einer auf 10-15°C gekühlten und gut gerührten Lösung von 83.7 ml (0.83 mol) HSiCl₃ in 800 ml Et₂O innerhalb von 2 h 1.66 mol PhMgBr in 800 ml Et₂O. Nach weiteren 12 h wird Et₂O i. Ölpumpenvak. abkondensiert, der Rückstand in 250 ml Pentan aufgenommen und Ungelöstes (MgBrCl) abfiltriert. Die fraktionierende Destillation des Filtrats liefert bei 80-84°C i. Hochvak. 130 g (0.60 mol; 73%) farbloses, öliges, sehr hydrolyseempfindliches Ph₂SiHCl. Identifizierung durch Vergleich mit authentischer Probe²²¹. - ¹H-NMR (Pentun): $\delta = 5.68$ (d, $J_{HH} = 1.7$ Hz; SiH), 7.23 bis 7.63 (m, SiPh₂); (Et₂O): $\delta = 5.70$ (d, $J_{HH} = 1.7$; SiH), 7.20 bis 7.58 (m, SiPh₂).

Darstellung von Dibrombis(trimethylsilyl)methan, $(Me_3Si)_2CBr_2$: Man tropft innerhalb von 18 h zu einer auf -78 °C gekühlten Lösung von 167 g (0.50 mol) CBr₄ und 150 ml (126 g, 1.2 mol) Me₃SiCl in 350 ml THF und 700 ml Et₂O 1.0 mol BuLi in 630 ml Hexan. Vom Reaktionsgemisch wird bei Raumtemp. alles i. Ölpumpenvak. Flüchtige entfernt, der verbleibende Rückstand in 100 ml Pentan gelöst und Ungelöstes abfiltriert (zweimal mit je 100 ml Pentan nachwaschen). Die fraktionierende Destillation des Filtrats i. Ölpumpenvak. liefert bei einer Badtemp. von 65–68 °C 127 g (0.40 mol, 80%) farbloses zähflüssiges (Me₃Si)₂CBr₂. Identifizierung durch Vergleich mit authentischer Probe³⁾. – ¹H-NMR (Et₂O): $\delta = 0.294$; (C₆D₆): $\delta = 0.199$.

Darstellung von 4: Man hält eine Lösung von 8.91 g (17.80 mmol) 6 und 1.51 g (19.33 mmol) wasserfreiem KHF₂ in 200 ml Methanol 2.5 h unter Rückfluß. Nach Abkondensation des Solvens i. Vak. Aufnahme des Rückstandes in Pentan und Abfiltrieren von unlöslichen Salzen kristallisieren aus der eingeengten Pentanlösung 6.96 g (15.8 mmol; 89%) farbloses 4. – Charakterisierung, Analysen: Tab. 1, 2. – Anmerkungen: Erwärmen von 1.5 g (3.0 mmol) 6 und 1.0 g (7.9 mmol) AgF in 50 ml THF 12 h auf 60°C bzw. von 2.3 g (5.0 mmol) 5 und 0.70 g (6.8 mmol) ZnF_2 in 50 ml THF im Bombenrohr eine Woche auf 150°C führt laut ¹H-NMR nicht zu 4, sondern zur Verbindung 14 (Isolierung durch fraktionierende

Tab. 2. Analysenwerte

Nr.	Summenformel	Mr	Be	r.	Gef.		
	(Namen ^{a)})	_	с	н	С	н	
4	C ₁₉ H ₂₈ BrFSi ₃	439.6	51.91	6.42	53.05	6.79	
5	C ₁₉ H ₂₈ BrClSi ₃	456.0	50.05	6.52	49.93	6.15	
5	C ₁₉ H ₂₈ Br ₂ Si ₃	500.5	45.59	5.59	44.17	5.64	
<u>7</u>	C19 ^H 29 ^{BrOSi} 3	437.6	52.15	6.68	53.28	6.98	
ŝ	C20H31BrOSi3	451.6	53.19	6.92	54.36	7.55	
2	C ₂₅ H ₃₃ BrOSi ₃	513,7	58.45	6.47	b)	b)	
<u>10</u>	C ₁₉ H ₂₉ BrSi ₃	421.6	54.10	7.25	54.07	7.04	
<u>11</u>	C ₂₀ H ₃₁ BrSi ₃	435.6	55,14	7.17	54.06	7.29	
<u>12</u>	C23H37BrSi3	477.7	57.83	7.81	57.67	7.76	
13	C ₂₅ H ₃₃ BrSi ₃	497.7	60.33	6.68	60.45	7.01	
<u>14</u>	C19H29FSi3	360.7	63.29	8.19	61.55	8.05	
<u>15</u>	C ₁₉ H ₂₉ BrSi ₃	421.6	54.10	7.25	b)	b)	
<u>16</u>	C ₁₉ H ₃₀ OSi ₃	358.7	63.62	8.43	63.61	8.42	
<u>17</u>	C20H32OSi3	372.7	64.45	8.65	Lit. ⁶⁾	Lit. ⁶⁾	
<u>18</u>	c ₂₅ H ₃₄ OSi ₃	434.8	59.06	7.88	70.36	8.16	
12	C ₁₉ H ₃₀ Si ₃	342.7	66.66	8.77	66.48	8.62	
<u>20</u>	C ₂₀ H ₃₂ Si ₃	356.7	67.34	9.04	69.19	9.49	
21	C ₂₃ H ₃₈ Si ₃	398.8	69.27	9.60	69.02	9.77	
22	C ₂₅ H ₃₄ Si ₃	418.8	71.70	8.18	69.82	7.91	
<u>2</u> <u>2</u>	^C 23 ^H 36 ^{Si} 3	396.8	69.62	9.14	67.81	8.86	
24	C ₂₁ H ₃₄ Si ₃	370.8	68.03	9.24	70.20	9.40	
25	C ₂₇ H ₄₆ Si ₃	454.9	71.29	10.19	70.55	10.47	
29	C ₃₅ H ₄₇ NSi ₄	594.1	70.76	7.97 ^{c)}	72.25	8.28 ^{c)}	
30	C ₂₅ H ₃₈ Si ₃	422.8	71.01	9.01	66.21	9.41	
<u>31</u>	C ₂₅ H ₃₈ Si ₃	422.8	71.01	9.01	68.93 ^{d)}	9.22 ^{d)}	
32	C ₄₄ H ₆₆ Si ₆	763.5	69.22	8.71	68.97	8.78	

^{a)} Brom(fluordiphenylsilyl)... (4), Brom(chlordiphenylsilyl)... (5), Brom(bromdiphenylsilyl)... (6), Brom(hydroxydiphenylsilyl)... (7), Brom(methoxydiphenylsilyl)... (8), Brom(phenoxydiphenylsilyl)... (9), Brom(diphenylsilyl)... (10), Brom(methyldiphenylsilyl)... (11), Brom(butyldiphenylsilyl)... (12), Brom(triphenylsilyl)... (13), (Fluordiphenylsilyl)... (14), (Bromdiphenylsilyl)... (15), (Hydroxydiphenylsilyl)... (16), (Methoxydiphenylsilyl)... (17), (Phenoxydiphenylsilyl)... (18), (Diphenylsilyl)... (19), (Methyldiphenylsilyl)... (20), (Butyldiphenylsilyl)... (21), (Triphenylsilyl)... (22), (3-Butenyldiphenylsilyl)bis(trimethylsilyl)methan, (23), 1-(Methyldiphenylsilyl)-1,1-bis-(trimethylsilyl)ethan (24), 1-(Butyldiphenylsilyl)-1,1-bis(trimethylsilyl)pentan (25), (Fluordiphenylsilyl)... (26), (Bromdiphenylsilyl)... (27), (Diphenylsilyl)... (28), ... [bis(trimethylsilyl]methyllithium. -^{bi} MS (70 eV): 9: m/z = 514 (M⁺; 9% bez. auf m/z = 73); Isoto 73); Isotopenmuster: m/z (%) = 512 (88, ber. 85.3), 513 (38, 37.4), 514 (100%, 100), 515 (41%, 41.0), 516 (17, 17.1), 517 (5, 4.4). 18: m/z (%) = 407 $(M^+ - CH_3; 100)$; Isotopenmuster: m/z (%) = 405 (90, ber. 87.5), 406 (31, 32.4), 407 (100, 100), 408 (34, 35.0), 409 (14, 14.8), 410 (3, 3.4). $-^{c_1}$ Ber. N 2.36 Gef. N 2.42. $-^{d_1}$ Isomer $(Me_3Si)_2[Ph_2(CH_2 = CMe - CMe = CH)Si]CH.$

Destillation bei 110-120 °C i.Hochvak.; Charakterisierung s.unten). KF setzt sich in Anwesenheit von [18]Krone-6 nicht mit 6 in siedendem Benzol bzw. THF um.

Darstellung von 5: Man tropft zu einer auf -15° C gekühlten Lösung von 2.1 g (5.0 mmol) 10 in 50 ml CCl₄ 5.0 mmol Cl₂ in 25 ml CCl₄. Nach Abkondensation aller flüchtigen Anteile (CCl₄, HCl) bei Raumtemp. i. Vak. liefert die fraktionierende Destillation bei 130°C i. Hochvak. 2.0 g (4.4 mmol, 88%) farbloses, kristallines 5. – Charakterisierung, Analysen: Tab. 1, 2.

Darstellung von 6: a) Man tropft zu einer Lösung von 21 g (50 mmol) 10 in 50 ml CCl₄ 2.54 ml (50 mmol) Br₂ in 25 ml CCl₄. Laut ¹H-NMR quantitative Bildung von 6, das nach Abkondensieren von CCl₄ i. Vak. erhalten wird. Umkristallisation aus Et₂O liefert 24 g (48 mmol; 96%) farbloses, kristallines 6. – Charakterisierung, Analysen: Tab. 1, 2.

b) Man rührt eine auf -78°C gekühlte Lösung von 11.02 g (50.37 mmol) Ph₂SiHCl und 15.75 g (49.50 mmol) (Me₃Si)₂CBr₂ in 250 ml THF, die mit 5.8 g (250 mmol) feingeschnittenem Na versetzt wurde, 15 h, entfernt vom - nunmehr gelben - Reaktionsgemisch nicht umgesetztes Na, tropft zur Lösung (-78°C) 8.0 ml (160 mmol) Br₂ und erwärmt auf 0°C. Nach 2 h wird alles i. Hochvak. Flüchtige (THF, HBr, Br₂) abkondensiert der verbleibende Rest bei Raumtemp. in Pentan aufgenommen, Unlösliches (NaCl, NaBr) abfiltriert und Pentan wieder abkondensiert. Umkristallisation des Rückstands aus Et₂O bei – 25 °C liefert 12.63 g (25.3 mmol; 51%) 6 in farblosen Kristallen. - Charakterisierung, Analysen: Tab. 1, 2. - Anmerkungen: 1) Das Reaktionszwischenprodukt (Me₃Si)₂(Ph₂HSi)CNa wird von Brom bei tiefer Temperatur $(-78 \degree C)$ rasch in 10 übergeführt, die Weiterbromierung von 10 zu 6 erfolgt erst um 0°C (vgl. a)). Lange Einwirkung von Br₂ auf 6 kann zur Spaltung der PhSi-Bindung führen (→ PhBr + BrSi). Der eingesetzte Überschuß an Br2 dient zum Binden von möglicherweise dispers im Reaktionsgemisch verteiltem Na. -2) Die Ausbeute an 6 wurde nicht optimiert; nach bisherigen Ergebnissen liegt sie bei Isolierung des Zwischenprodukts 10 (Weiterreaktion: vgl. a)) etwas höher. -3) Die Darstellung von 6 kann auch mit Li anstelle von Na analog b), aber mit schlechterer Ausbeute (ca. 40%) erfolgen.

Darstellung von 7, 8: Man beläßt 0.30 g (0.60 mmol) 6 3 d bei Raumtemp. in 2 ml H₂O/5 ml THF bzw. 6 h in 2 ml siedendem MeOH. Laut ¹H-NMR quantitative Bildung von 7 bzw. 8. Man kondensiert alles i. Vak. Flüchtige ab und kristallisiert den Rückstand aus Et₂O um. Ausb. 0.24 g (0.56 mmol; 93%) 7 bzw. 0.24 g (0.54 mmol, 90%) 8 in farblosen Kristallen. – Charakterisierung, Analysen: Tab. 1, 2. – Anmerkungen: 1) 7 entsteht auch beim Erwärmen von 6 in wasserhaltigem MeOH. – 2) Die Halbwertszeit der Umwandlung von 6 in 8 beträgt in MeOH ca. 2 d bei Raumtemperatur. – 3) Bei Raumtemp. beobachtet man keine Umwandlung 6 \rightarrow 7 in H₂O-haltigem C₆H₆ oder Et₂O bzw. 6 \rightarrow 8 in MeOHhaltigem Et₂O bzw. 6 \rightarrow 9 in PhOH-haltigem THF.

Darstellung von 9, 18: Zu 0.20 mmol 27 in 4.5 ml Et₂O tropft man bei -78 °C 0.20 mmol PhOLi, suspendiert in 5.5 ml Et₂O. Zur gebildeten hellgelben Suspension werden nach Erwärmen auf Raumtemp. 10.5 µl (0.20 mmol) Br₂ (A) bzw. 8.4 µl (0.20 mmol) MeOH (B) gegeben. Nach dem Austausch des Solvens gegen Pentan filtriert man von Unlöslichem, kondensiert Pentan vom Filtrat ab und trennt den Rückstand nach Aufnahme in 0.5 ml MeOH/2.5 ml MeOtBu durch präparative HPLC [Säule: 250 × 21.2 mm; Füllung: Zorbax ODS von DuPont; Fluß: 21 ml/min; mobile Phase MeOH/H₂O (Gradient, konkav, Kurve 9) 94:6 bis 100:0 (nach 23 min). Retention im Falle A: 22.3 min (ca. 10% 9), im Falle B: 19.0 min (ca. 65%) 18)]. – Anmerkung: 18 entsteht auch bei Einwirkung von PhOH auf 27 in Et₂O neben 15 in kleiner Ausbeute.

Darstellung von 10 (gemeinsam mit G. Preiner und M. Rogalli): Man rührt eine auf -78°C gekühlte Lösung von 12.33 g (56.41 mmol) Ph2SiHCl und 17.94 g (56.41 mmol) (Me3Si)2CBr2 in 150 ml THF, die mit 3.45 g (500 mmol) Li in kleinen Stücken versetzt wurde, 2 d, erwärmt auf Raumtemp. und filtriert überschüssiges Li ab. Nun werden zum – wieder auf –78°C gekühlten – Filtrat 2.95 ml (58 mmol) Br₂ getropft. Anschließend kondensiert man im Zuge des Erwärmens der Reaktionsmischung auf Raumtemp, alles i. Hochvak. Flüchtige (THF, Br₂) ab, nimmt den Rückstand in Pentan auf, filtriert Unlösliches (LiBr, LiCl) ab und kondensiert Pentan wieder ab. Umkristallisation des verbleibenden Rest aus Et2O liefert 17.25 g (40.88 mmol; 73%) farbloses 10. - Charakterisierung, Analysen: Tab. 1, 2. - Anmerkungen: 1) Die Darstellung von 10 kann auch mit Na anstelle von Li erfolgen. - 2) 10 bildet sich - in schlechteren Ausbeuten - auch gemäß: Ph2SiHCl + (Me3Si)2- $CBr_2 + BuLi \rightarrow 10 + BuBr + LiCl$ (keine 10-Bildung bei Verwendung von PhLi anstelle von BuLi): Zu 2 mmol (Me₃Si)₂CBr₂ in 10 ml THF/5 mmol Et₂O bei -115 °C (A) bzw. 10 ml THF/5 mmol Et₂O bei -78 °C (B) bzw. 15 ml THF bei -78 °C (C) bzw. 15 ml Et₂O bei - 78 °C (D) werden zunächst 2 mmol BuLi in 1.5 ml Hexan, dann 2 mmol Ph₂SiHCl in 5 ml Et₂O getropft. Das auf Raumtemp. erwärmte Reaktionsgemisch enthält – laut ¹H-NMR – die Verbindung 10 mit 23 (A) bzw. 16 (B) bzw. 15 (C) bzw. 18% (D) Ausb. neben (Me₃Si)₂CBr₂, (Me₃Si)₂CHBr und (Me₃Si)₂CBuBr. Man destilliert im Falle A alles i. Hochvak, bis 135 °C Flüchtige ab. Umkristallisation des Rückstands aus Et₂O liefert 0.16 mmol (8%) 10.

Darstellung von 11, 13, 24: Zu einer auf - 78 °C gekühlten Lösung von 0.25 g (0.50 mmol) 6 in 6 ml Et₂O tropft man 0.50 mmol MeLi in 2 ml Et₂O (A) bzw. 1.00 mmol MeLi in 4 ml Et₂O (B) bzw. 2.00 mmol PhLi in 2 ml Et₂O/1 ml C₆H₆ (C), anschließend im Falle C 1.05 mmol Br₂. Laut ¹H-NMR quantitative Bildung von 11 bzw. 24 bzw. 13. Man kondensiert im Zuge des Erwärmens des Reaktionsgemischs auf Raumtemp. alles i. Hochvak. Flüchtige ab, löst den verbleibenden Rest in Pentan, trennt Unlösliches und dann Pentan ab. Es verbleibt praktisch reines 11 (A; nach Umkristallisation aus Et₂O 0.21 g, 0.48 mmol, 95%) bzw. 24 (B; nach Umkristallisation aus Et₂O 0.17 g, 0.47 mmol, 95%) bzw. 13 (C; nach Umkristallisation aus Et₂O 0.23 g, 0.47 mmol, 95%). - Charakterisierung, Analysen: Tab. 1, 2. - Anmerkungen: Während äquimolare Mengen 6 und MeLi in Et₂O bei -78 C quantitativ zu 11 reagieren, wandeln sich äquimolare Mengen 6 und PhLi in Et₂O bei - 78 °C in 100% 27 um. Überschüssiges MeLi führt dann 11 in (Me₃Si)₂(Ph₂MeSi)CLi über, das von gebildetem MeBr selbst bei -78°C zu 24 methyliert wird (keine Bildung von 20 nach Zugabe von MeOH zur Lösung bei -78°C, vgl. hierzu Darstellung von 20). Das aus 13 mit PhLi gebildete (Me₃Si)₂(Ph₂PhSi)CLi wird auch bei Raumtemp. von PhBr nicht phenyliert (vgl. auch Darstellung von 25). – 2) 11 entsteht auch aus 27 bei Zugabe zunächst von MeLi, dann von Br₂.

Darstellung von 12, 21, 23, 25: Zu einer auf -78 °C gekühlten Lösung von 0.25 g (0.50 mmol) 6 in 6 ml Et₂O tropft man 1.00 mmol BuLi in 3.0 ml Hexan, dann 1.05 mmol Br₂ (A) bzw. 0.50 mmol BuLi in 1.5 ml Hexan, dann nach 15 h bei -78 °C 0.5 ml MeOH (B; vgl. Anmerkung 3) bzw. 1.00 mmol BuLi in 3 ml Hexan, dann nach 15 h bei Raumtemp. 0.5 ml MeOH (C). Laut 'H-NMR der Reaktionslösung bei Raumtemp. bilden sich im Falle A 100% 12, im Falle B 61% 17 und 20% 23, im Falle C 69% 21 und 31% 25. Man kondensiert alles i. Hochvak. Flüchtige ab, löst den verbleibenden Rest in Pentan, filtriert Unlösliches ab und kondensiert Pentan vom Filtrat ab. Die Reinigung von 12 (A) sowie die Abtrennung von 21, 23 und 25 (B, C) erfolgt nach Lösen der gebildeten Gemische in 2 ml MeOH/2 ml *t*BuOMe durch präparative HPLC [Säule: 21.2 × 250 mm; Füllung: Zorbax ODS von DuPont; mo-

bile Phase: MeOH/H2O (99:1) (A) bzw. MeOH/H2O (Gradient, konkav, Kurve 7) 93:7 bis 100:0 (nach 10 min) (B) bzw. MeOH/ tBuOMe (Gradient, konkav, Kurve 9) 100:0 bis 85:15 (nach 16 min) (C); Fluß: 20 ml/min; Retention im Falle A: 13.4 min (86% 12); im Falle B: 12.6 min (51% 17), 14.7 min (17% 23); im Falle C: 11.3 min (66% 21), 15.4 min (29% 25)]. - Charakterisierung, Analysen: Tab. 1, 2. - Anmerkungen: 1) Zugabe von 0.5 mmol BuLi in Hexan, dann von 0.5 ml MeOH zu 0.3 mmol 6 in Et₂O bei -78 °C führt – laut ¹H-NMR – zu 36% 12 und 64% 17. – 2) Gemäß Anmerkung 1) wird (Me₃Si)₂(Ph₂BuSi)CLi von BuBr anders als (Me₃Si)₂(Ph₂MeSi)CLi von MeBr (vgl. Darstellung von 24) bei -78 C nicht alkyliert. Butylierung erst um 0 C. - 3) Gemäß Anmerkung 1) bilden sich in $Et_2O(-78 C)$ aus 6 und BuLi zunächst 36% 12 und 64% 27 (+ MeOH \rightarrow 17); derartige Reaktionslösungen wandeln sich langsam unter Verbrauch von 12 in Lösungen um, die nach Zugabe von MeOH 61% 17 (aus 27 bzw. 15 + MeOH) und 20% 23 enthalten (12 + 27 \rightarrow 23 + 15 + LiBr?). -4) 21 bildet sich auch durch Zugabe von BuLi, dann MeOH zu 27 (aus 6 + PhLi) in quantitativer Ausbeute.

Darstellung von 14: Zu einer auf -78 C gekühlten Lösung von 0.30 g (0.60 mmol) 4 in 7 ml Et₂O werden zunächst 0.60 mmol PhLi in 0.5 ml C₆H₆/2.5 ml Et₂O, dann 30 mmol H₂O in 1.5 ml THF getropft. Man erwärmt auf Raumtemperatur. Laut ¹H-NMR quantitative Bildung von 14. Das Solvens wird durch Pentan ersetzt, unlösliches abfiltriert und das Pentan abkondensiert. Es verbleibt praktisch reines 14 (nach Hochvakuumdestillation bei 110–120°C 0.20 g, 0.57 mmol, 95%). – Charakterisierung, Analysen: Tab. 1, 2. – Anmerkung: 14 entsteht auch bei Einwirkung von AgF bzw. ZnF₂ auf 6; vgl. Darstellung von 4.

Darstellung von 15, 16, 17, 20, 22: Zu einer auf -78°C gekühlten Lösung von 0.30 g (0.60 mmol) 6 in 7 ml Et₂O tropft man zunächst 0.60 mmol PhLi in 0.5 ml $C_6H_6/2.5$ ml Et_2O , dann 6.0 mmol HBr in 5 ml Toluol (durch Bestrahlen von 6.0 mmol Br₂ in 5 ml Toluol) (A) bzw. 30 mmol H₂O in 1.5 ml THF (B) bzw. 0.5 ml MeOH (C) bzw. zunächst 0.60 mmol MeLi in 2 ml Et₂O, dann 0.5 ml MeOH (D) bzw. zunächst 0.60 mmol PhLi in 0.5 ml $C_6H_6/2.5$ ml Et_2O_7 dann 0.5 ml MeOH (E). Laut ¹H-NMR des auf Raumtemp. erwärmten Reaktionsgemischs quantitative Bildung von 15, 16, 17, 20 bzw. 22. Es wird alles i. Ölpumpenvak. Flüchtige abkondensiert, der verbleibende Rest in Pentan aufgenommen, unlösliches abfiltriert und das Pentan abkondensiert. Es verbleibt praktisch reines 15 (A) bzw. 16 (B; nach Umkristallisation aus Et₂O 0.17 g, 0.47 mmol, 78%) bzw. 17 (C; nach fraktionierender Hochvakuumdestillation bei 120-130°C Badtemp. 0.19 g, 0.50 mmol, 83%) bzw. 20 (D) bzw. 22 (E; nach Umkristallisation aus Et₂O 0.20 g, 0.48 mmol, 80%). - Charakterisierung, Analysen: Tab. 1, 2. - Anmerkungen: 1) 15 entsteht auch durch Zugabe von 1.6 mmol HCl in 2 ml Et₂O anstelle von HBr in Toluol. -2) 15 bildet sich auch aus 19 in Et₂O und Br₂. - 3) Methanolzugabe zu einer auf -78 °C gekühlten etherischen Lösung von 0.6 mmol 6/0.6 mmol tBu₃SiNa liefert 17.

Darstellung von 19 sowie 28 (M = Li, Na)

a) Man rührt eine auf $-78 \,^{\circ}$ C gekühlte Lösung von 1.41 g (6.44 mmol) Ph₂SiHCl und 2.06 g (6.47 mmol) (Me₃Si)₂CBr₂ in 30 ml THF, die mit 0.4 g (60 mmol) Li bzw. 0.7 g (30 mmol) Na in kleinen Stücken versetzt wurde, 2 d (Li) bzw. 15 h (Na), erwärmt auf Raumtemp. und filtriert überschüssiges Li bzw. Na ab. Die gelben Reaktionslösungen enthalten laut ¹H-NMR (vgl. Tab. 1) ausschließlich **28** (M = Li bzw. Na). Identifizierung der nicht isolierten Verbindungen auf dem Wege über Folgereaktionsprodukte mit H₂O (vgl. b) bzw. Br₂ (vgl. Darstellung von **10**). – Charakterisierung: Tab. 1.

b) Man versetzt die nach a) bereitete Lösung von 28 (M = Li, Na) in THF langsam mit 20 mmol H₂O in 10 ml THF. Laut ¹H-NMR quantitative Bildung von 19. Die fraktionierende Hochvakuumdestillation (Badtemp. 160–190 °C) liefert 1.84 g (5.37 mmol, 85%) farbloses, kristallines 19. – Charakterisierung, Analysen: Tab. 1, 2.

Darstellung von 26. 27 sowie $(Me_3Si)_2(Ph_2XSi)CLi$ (X = Me, Bu, Ph, OPh)

a) Man tropft zu einer auf -78 °C gekühlten Lösung von 0.40 g (0.80 mmol) 6 in 10 ml Et₂O 0.80 mmol PhLi in 0.5 ml C₆H₆/2.5 ml Et₂O (A) bzw. 0.80 mmol BuLi in 2 ml Hexan (B) bzw. 0.80 mmol MeLi in 3 ml Et₂O (C) bzw. 0.80 mmol tBu₃SiNa in 1.5 ml Et₂O/ 1.5 ml THF (D). Laut ¹H-NMR der mit MeOH versetzten Reaktionslösung (s.u.) quantitative Bildung von 27 im Falle A bzw. (Me₃Si)₂(Ph₂BrSi)CNa im Falle von D. Im Falle B entstehen 64% 27 und 36% 12, im Falle C 100% 11. Identifizierung von 27 erfolgte nach Zugabe von (i) HBr oder HCl in Form von 15, (ii) MeOH in Form von 17, (iii) RLi in Form von (Me₃Si)₂(Ph₂RSi)CLi (vgl. Darstellung von 15, 17 und c). – Charakterisierung von 27: Tab. 1. – Anmerkungen: 1) Beläßt man 27 in Et_2O (A) 1 Woche bei $-78^{\circ}C$ und versetzt die Lösung dann mit MeOH, so bildet sich quantitativ 17. 27 ist somit bei -78 C metastabil. Bei schrittweisem Erwärmen von 27 in Et₂O (A) beobachtet man ab $-50^{\circ}C^{-1}H$ -NMR-spektroskopisch Thermolyse⁸⁾. -2) (Me₃Si)₂(Ph₂BrSi)CNa in Et₂O (D) thermolysiert – laut Reaktion mit MeOH (\rightarrow 17) sowie ¹H-NMR - ab Raumtemperatur. - 3) Behandelt man wie im Falle A, B, C etherische, auf -78 C gekühlte Lösungen von 6 in Anwesenheit von tBu2MeSiN3 mit PhLi, BuLi bzw. MeLi, so bildet sich in quantitativer (PhLi, BuLi) bzw. kleiner, mit wachsender Azidmenge steigender Ausb. neben 11 (MeLi) ein Folgeprodukt des aus 27 hervorgehenden Silaethens 3 mit tBu_2MeSiN_3 ([2 + 3]-Cycloaddukt; für Einzelheiten vgl. Lit⁸). 27 ist somit auch im Falle der Einwirkung von BuLi und MeLi auf 6 in Et₂O einziges Primärprodukt.

b) Man tropft zu einer auf -78 °C gekühlten Lösung von 0.40 g (0.80 mmol) 6 in 10 ml THF 0.80 mmol PhLi in 0.5 ml C₆H₆/2.5 ml Et₂O (A) bzw. 0.80 mmol BuLi in 2 ml Hexan (B) bzw. 0.80 mmol MeLi in 3 ml Et₂O (C). Laut ¹H-NMR der mit MeOH versetzten Reaktionslösung (vgl. a) bilden sich im Falle A und B 100% 27, im Falle C 57% 27 und 43% 11. Identifizierung von 27: vgl. a). – Anmerkung: 27 in THF zersetzt sich thermisch laut ¹H-NMR ab ca. 0°C.

c) Man tropft zu einer auf -78 °C gekühlten Lösung von 0.40 g (0.80 mmol) 4 in 10 ml Et₂O 0.80 mmol PhLi in 0.5 ml C₆H₆/2.5 ml Et₂O. Laut ¹H-NMR quantitative Bildung von 26. Identifizierung nach Zugabe von H₂O/THF in Form von 14 (vgl. Darstellung von 14). – Charakterisierung: Tab. 1. – Anmerkungen: 1) 26 in Et₂O ist laut ¹H-NMR bei Raumtemp. metastabil. Bei schrittweisem Erwärmen von 26 in Et₂O beobachtet man ab 50 °C ¹H-NMR-spektroskopisch Thermolyse. – 2) Nach Ersatz des Diethylethers in der Et₂O-Lösung von 26 durch Benzol zersetzt sich 26 bereits bei Raumtemperatur.

d) Man tropft zu einer Lösung von 0.80 mmol 27 in Et₂O bei -78 'C [gewonnen wie unter a) A) beschrieben] 0.80 mmol PhLi in Et₂O/C₆H₆ bzw. BuLi in Hexan bzw. MeLi in Et₂O. Es bildet sich in quantitativer Reaktion (Me₃Si)₂(Ph₂XSi)CLi (X = Ph, Bu, Me). Identifizierung nach Zugabe von (i) MeOH in Form von 20, 21 bzw. 22, (ii) Br₂ in Form von 11, 12 bzw. 13 (vgl. Darstellung der betreffenden Verbindungen). - Anmerkungen: 1) (Me₃Si)₂-(Ph₂BuSi)CLi ist auch aus 6 + 2 BuLi in Et₂O bei -78 'C zugänglich. -2) (Me₃Si)₂(Ph₂MeSi)CLi ist nicht aus 6 + 2 MeLi in Et₂O bei -78 'C gewinnbar, da die Lithiumverbindung von anwesendem MeBr bei -78 'C rasch methyliert wird. -3) (Me₃Si)₂(Ph₂XSi)CLi (X = OPh) bildet sich offenbar aus 27 und PhOLi; vgl. Darstellung von 9, 18.

Darstellung von 29: Man erhitzt 8.0 mmol 26 in 16 ml Et₂O (vgl. Darstellung von 26) zusammen mit 2.2 ml (8.4 mmol) $Ph_2C =$ NSiMe₃ in einem evakuierten und abgeschlossenen Bombenrohr 2.5 d auf 40°C. Laut ¹H-NMR ca. 80proz. Bildung von 29. Das Reaktionsgemisch wird mit 2 ml MeOH (zur Überführung von restlichem $Ph_2C = NSiMe_3$ in $Ph_2C = NH$ und MeOSiMe_3) versetzt. Nach Abkondensieren aller im Hochvak, bei Raumtemp, flüchtigen Anteile kristallisiert man den Rückstand aus MeOH/tBuOMe (Volumenverhältnis 1:1) um. 2.6 g (4.6 mmol, 55%) 2,3,4.4a-Tetrahydro-1,3,3-triphenyl-2,4,4-tris(trimethylsilyl)-2-aza-3-silanaphthalin (29) in Form gelber Kristalle, Schmp. ca. $80^{\circ}C$ (Zers.). - ¹H-NMR (Et₂O, 25 °C): $\delta = -0.550$ (s, SiMe₃), -0.033 (s, SiMe₃), 0.111 (schr breit, NSiMe₃), 4.86 (m, CH-), 5.29-5.46 (m, =CH-), $5.74 - 6.01 \text{ (m, 3 = CH -)}, 7.26 - 7.52/8.02/8.24 - 8.35 \text{ (m/m/m; Ver$ hältnis 11:2:2; CPh, SiPh₂); (C₆D₆): $\delta = -0.414$ (s, SiMe₃), 0.157 (sehr breit, NSiMe₃), 0.247 (s, SiMe₃), 5.02 (m, CH-), 5.37-5.52 (m, = CH -), 5.87 - 6.25 (m, 3 = CH -), 7.03 - 7.39/8.08/8.43 - 8.54 $(m/m/m; Verhältnis 11:2:2; CPh, SiPh_2); (CDCl_3): \delta = -0.527 (s,$ SiMe₃), -0.021 (s, SiMe₃), 0.132 (schr breit, NSiMe₃; bei -25 C Aufspaltung in drei Signale, d.h. gehinderte Rotation; bei +70 C Halbwertsbreite 1.8 Hz gegenüber 0.6 Hz für die anderen SiMe3-Signale), 4.89 (m, (CH-), 5.38-5.52 (m, =CH-), 5.79-6.04 (m, 3 = CH-), 7.26-7.55/8.05/8.23-8.34 (m/m/m; Verhältnis)11:2:2; CPh, SiPh₂). - ¹³C-NMR (CDCl₃, 70 C): $\delta = 4.49$ (q, SiMe₃), 4.80 (q, SiMe₃), 5.06 (q, breit, NSiMe₃; bei Raumtemp. nicht beobachtbar, bei -25° C Aufspaltung in drei Signalc bei $\delta = 0.74$, 5.40, 7.94, d.h. gehinderte Rotation), 21.16, (s, CSi₃), 38.56 (d, CH-, 116.5/121.9/124.7/128.1/128.2/146.4 (d/d/d/s/s, CH = CH - CH = CH - C = C - N, 140.2/137.4/127.4/128.1 (s/d/d; i/o/ *m/p*-C von SiPh), 135.3/137.2/132.8/127.9 (s/d, breit/d, breit/d; *i/o/* m/p-C von SiPh; o/m-C bei Raumtemp. schlecht beobachtbar, bei -25°C Aufspaltung in jeweils zwei Signale, d.h. gehinderte Rotation), 140.9/129.7/127.3/130.2 (s/d/d, i/o/m/p-C von CPh). - ²⁹Si-NMR (CDCl₃, 70 °C): $\delta = -14.89$ (SiPh₂), -1.23 (NSiMe₃; bei Raumtemp. schlecht beobachtbar). 2.45 (SiMe₃), 8.12 (SiMe₃). -Analysen: Tab. 2.

Thermolyse von 26 und 27 in Anwesenheit von 2,3-Dimethyl-1,3butadien (DMB): Man beläßt 1.0 mmol 27 in 25 ml Et₂O (aus 0.50 g, 1.00 mmol 6 + 1.00 mmol PhLi in Benzol/Ether, vgl. Darstellung von 27) 3.5 d bei - 78°C zusammen mit 1.13 ml (10 mmol) DMB (A) bzw, 2.26 ml (20 mmol) DMB (B) bzw. man erhitzt 0.05 mmol 26 in 0.5 ml Et₂O (vgl. Darstellung von 26) zusammen mit 0.06 ml (0.53 mmol) DMB im evakuicrten, abgeschlossenen Bombenrohr 20 h auf 50°C (C) bzw. 3 h auf 100°C (D). Laut ¹H-NMR bilden sich hierbei im Falle A, B ca. 30% 30 und 70% 31, im Falle C, D ca. 53% 30 und 47% 31, wobei 31 zu ca. 75% (A), 50% (B), 25% (C), 20% (D) in Form seines Folgeproduktes 32 vorliegt. Nach Abkondensation aller i. Ölumpenvak. flüchtigen Anteile des im Falle A gebildeten Reaktionsgemischs, Versetzen des verbleibenden Rests mit Pentan, Abfiltrieren unlöslicher Bestandteile und Abkondensieren des Pentans erfolgte die Trennung des verbleibenden Verbindungsgemisches nach Lösen in 3 ml MeOH/3 ml C₆H₆ durchpräparative HPLC [Säule: 21.2 × 250 mm; Füllung: Zorbax C8; mobile Phase: MeOH/H₂O (97:3); Fluß: 20 ml/min; Retentionen: 8.7 min (31 sowie dessen Isomerisierungsprodukt, vgl. Anmerkung), 9.6 min (30), 24.5 min (32)]. - Anmerkung: Gebildetes 31 lagert sich unter den Bedingungen der Produktaufarbeitung teilweise unter Doppelbindungsverschiebung in Ph₂Si(CH = CHMe - CH- $Me = CH_2)CH(SiMe_3)_2$ um. Trennung des Gemischs nach Lösen in 2 ml C₆H₆ durch präparative HPLC [Säule: 21.2 \times 250 mm; Füllung: Zorbax C8; mobile Phase: CH₃CN/H₂O (90:10); Fluß: 20 ml/ min; Retentionen: 28.8 min (31, ca. 15%), 32.3 min (Umlagerungsprodukt, ca. 73%)].

3,4-Dimethyl-1,1-diphenyl-6,6-bis(trimethylsilyl)-1-sila-3-cyclohexen (30): Farblose Kristalle, Schmp. 97 °C. - ¹H-NMR (Et₂O): $\delta =$ -0.044 (s, 2 SiMe₃), 1.82 (m, SiCH₂, 2 CH₃), 2.57 (m, CCH₂C), 7.22 - 7.32/7.48 - 7.59 (m/m, SiPh₂); (C₆H₆): $\delta = 0.084$ (s, 2 SiMe₃), 1.77 (m, SiCH₂, 2 CH₃), 2.65 (m, CCH₂C), 7.11 – 7.21/7.61 – 7.72 (m/ m, SiPh₂): (CDCl₃): $\delta = -0.084$ (s, 2 SiMe₃), 1.69 (m, SiCH₂), 1.80 $(m, 2CH_3), 2.48 (m, CCH_2C), 7.23 - 7.33/7.46 - 7.57 (m/m, SiPh_2).$ ¹³C-NMR (CDCl₃): $\delta = 1.83$ (q, 2 SiMe₃), 3.56 (s, Si₃C), 21.76/23.67 (q/q, CH₃/CH₃), 22.33 (t, SiCH₃), 35.13 (t, CH₂), 127.86/127.95 (s/s, $C = C(), 139.0/135.6/127.5/128.9 (s/d/d/d; i/o/m/p-C von SiPh_).$ -- 29 Si-NMR (CDCl₃): $\delta = -9.54$ (SiPh₂), 2.91 (2 SiMe₃). - Analysen: Tab. 2.

[Bis(trimethylsilyl)methyl](3-methyl-2-methylen-3-butenyl)diphenylsilan (31): Farbloser Feststoff. $- {}^{1}H-NMR$ (Et₂O): $\delta =$ 0.003 (s, 2 SiMc₃), 0.040 (s, Si₃CH), 1.75 (m, CH₃), 2.42 (m, SiCH₂), 4.72/4.92 (m/m, 2 = CH₂), 7.25 - 7.34/7.56 - 7.67 (m/m, SiPh₂); $(C_6 D_6)$: $\delta = 0.086$ (s, 2 SiMe₃), 0.122 (s, Si₃CH), 1.75 (m, CH₃), 2.56 (m, SiCH₂), 4.27/5.09 (m/m, $2 = CH_2$), 7.12 - 7.21/7.67 - 7.78 (m/m, $SiPh_2$; (CDCl₃): $\delta = -0.016$ (s, 2 SiMe₃), 0.017 (s, Si₃CH), 1.79 (m, CH_3), 2.41 (m, SiCH₂), 4.76/4.96 (m/m, 2 = CH_2), 7.25 - 7.34/ 7.53 - 7.64 (m/m, SiPh₂). $-^{13}$ C-NMR (CDCl₃): $\delta = 2.30$ (d, Si₃CH), 3.80 (q, 2 SiMe₃), 21.20 (q, CH₃), 21.94 (t, SiCH₂), 113.4/113.6 (t/t, $2 = CH_2$), 137.5/135.9/127.2/128.9 (s/d/d, *i/o/m/p*-C von SiPh₂), 144.4/144.6 (s/s, $C = C_{1}$). - ²⁹Si-NMR (CDCl₃): $\delta = -8.01$ (SiPh₂), 0.11 (2 SiMe₃).

[Bis(trimethylsilyl)methyl](2,3-dimethyl-1,3-butadienyl)diphenylsilan $[Ph_2Si(CH = CHMe - CHMe = CH_2) - CH(SiMe_3)_2]$: Farblose Kristalle, Schmp. 98 °C. $- {}^{1}$ H-NMR (Et₂O): $\delta = -0.093$ $(s, 2 \text{ SiMe}_3), -0.049$ $(s, Si_3CH), 1.82/2.09$ $(m, 2 CH_3), 5.16$ $(m, 2 CH_3), 5.16$ = CH₂), 6.10 (m, = CH₂), 6.10 (m, = CHSi), 7.23 - 7.32/7.58 - 7.69 $(m/m, SiPh_2); (C_6D_6): \delta = 0.010 (s, Si_3CH), 0.037 (s, 2 SiMe_3), 1.89/$ 2.09 (m/m, 2 CH₃), 5.10 (m, = CH₂), 6.24 (m, = CHSi), 7.12-7.21/7.67 - 7.78 (m/m, SiPh₂); (CDCl₃): $\delta = -0.017$ (s, 2 SiMe₃), -0.068(s, Si₃CH), 1.84/2.09 (m/m, 2 CH₃), 5.18 (m, =CH₂), 6.05 (m, ¹³C-NMR =CHSi), 7.25-7.34/7.58-7.69 (m/m, SiPh₂). - $(CDCl_3)$: $\delta = 3.11$ (q, 2 SiMe₃), 3.30 (d, Si₃CH), 21.40/22.20 (q/q, 2 CH_3), 113.7 (t, =CH₂), 122.9 (d, =CHSi), 138.6/135.4/127.6/128.8 $(s/d/d, i/o/m/p-C \text{ von SiPh}_2)$, 145.6/154.3 $(s/s, 2 = C_2)$. - ²⁹Si-NMR (CDCl₃): $\delta = -16.70$ (SiPh₂), 0.22 (2 SiMe₃). - Analysen: Tab. 2.

3-[2,2-Diphenyl-3,3-bis(trimethylsilyl)-2-silapropyl]-4-methyl-1,1-diphenyl-6,6-bis(trimethylsilyl)-1-sila-3-cyclohexen (32): Farblose Kristalle, Schmp. 158 °C. - ¹H-NMR (Et₂O): $\delta = -0.110/$ 0.034 (s/s, 4 SiMe₃), 0.003 (s, Si₃C), 1.44/2.37 (m/m, 2 CH₂Si), 1.61 (m, CH₃), 2.44 (m, CCH₂C), 7.18 - 7.27/7.30 - 7.39/7.69 - 7.80 (m/ m/m, 2 SiPh₂); (C₆D₆): $\delta = 0.064/0.116$ (s/s, 4 SiMe₃), 0.037 (s, Si₃CH), 1.68/2.53 (m/m, 2 CH₂Si), 1.81 (m, CH₃), 2.61 (m, CCH₂C), 7.09 - 7.22/7.42 - 7.43/7.76 - 7.87 (m/m/m, 2 SiPh₂); (CDCl₃): $\delta =$ -0.102/0.028 (s/s, 4 SiMe₃), -0.006 (s, Si₃CH), 1.48/2.37 (m/m, 2 CH₂Si), 1.67 (m, CH₃), 2.37 (m, CCH₂C), 7.22-7.29/7.33-7.42/ 7.66 - 7.77 (m/m/m, 2 SiPh₂). - ¹³C-NMR (CDCl₃): $\delta = 1.83/4.06$ (q/q, 4 SiMe₃), 3.61/3.76 (d/d, 2 Si₃C), 22.91 (q, CH₃), 23.00/28.68 $(t/t, 2 CH_2Si)$, 35.11 (t, CH₂), 126.9/130.7 (s/s, 2 = C₁), 137.4 und 138.9/135.5 und 135.9/127.3 und 127.4/128.7 und 129.0 (s + s/d + d/d + d/d + d, i + i/o + o/m + m/p + p-C von SiPh₂ + Si-Ph₂). $-{}^{29}$ Si-NMR (CDCl₃): $\delta = -9.72$ (SiPh₂ im Ring), -8.92 $(SiPh_2 \text{ in Kette}), 0.14 (2 Me_3Si \text{ in Kette}), 2.47 (2 SiMe_3 \text{ im Ring}). -$ Analysen: Tab. 2.

Thermolyse von 29 in Anwesenheit von 2,3-Dimethyl-1,3-butadien (DMB): Man erhitzt 0.28 g (0.50 mmol) 29 und 0.60 ml (5.3 mmol)

DMB in 5 ml Et₂O im evakuierten und abgeschlossenen Bombenrohr 2 h auf 100 °C. Laut ¹H-NMR bilden sich hierbei ca. 45% 30, ca. 40% 31 sowie ca. 15% eines Isomeren von 29 [(2+2)-Cycloaddukt von 3 und $Ph_2C = NSiMe_3$, vgl. Lit.⁸), wobei 31 zu ca. 20% in Form seines Folgeprodukts 32 vorliegt. Bezüglich der Charakterisierung von 30, 31 und 32 vgl. vorstehenden Versuch.

CAS-Registry-Nummern

3: 117984-07-3 / **4**: 117984-08-4 / **5**: 117984-09-5 / **6**: 117984-10-8 / 7: 117984-11-9 / **8**: 117984-12-0 / **9**: 117984-13-1 / **10**: 117984-14-2 / 11: 117984-15-3 / 12: 117984-16-4 / 13: 117984-17-5 / 14: 117984-18-6 / 15: 117984-19-7 / 16: 117984-20-0 / 17: 68260-21-9 / 18: 117984-21-1 / 19: 117984-22-2 / 20: 117984-23-3 / 21: 117984-24-4 / **22**: 117984-25-5 / **23**: 117984-26-6 / **24**: 117984-27-7 / **25**: 117984-28-8 / **26**: 117984-29-9 / **27**: 117984-30-2 / **28** (Li): 117984-CNa: 117984-36-8 / Ph₂SiHCl: 1631-83-0 / (Me₃Si)₂CBr₂: 29955- $10-0 / Ph_2C = NSiMe_3$: 17599-59-6 / KHF₂: 7789-29-9 / PhOLi: 555-24-8 / HSiCl₃: 10025-78-2 / CBr₄: 558-13-4 / ²⁹Si: 14304-87-1

¹⁾ 32. Mitteilung über ungesättigte Siliciumverbindungen. Zugleich 86. Mitteilung über Verbindungen des Siliciums und seiner Gruppenhomologen. 31. (85.) Mitteilung: N. Wiberg, G. Preiner, K. Schurz, G. Fischer, Z. Naturforsch., Teil B, 42 (1988) 1468.

- ²⁾ N. Wiberg, G. Preiner, Angew. Chem. 89 (1977) 343; Angew. Chem. Int. Ed. Engl. 16 (1977) 328.
- ³⁾ N. Wiberg, G. Preiner, O. Schieda, Chem. Ber. 114 (1981) 2087.
- ⁴⁾ N. Wiberg, G. Preiner, O. Schieda, G. Fischer, Chem. Ber. 114 (1981) 3505.
- ⁵⁾ N. Wiberg, G. Wagner, *Chem. Ber.* **119** (1986) 1467. ⁶⁾ C. Eaborn, D. A. R. Happer, K. D. Safa, D. R. M. Walton, *J.* Organomet. Chem. 157 (1978) C50.
- ⁷⁾ C. Eaborn, D. A. R. Happer, P. B. Hitchcock, S. P. Hopper, K. D. Safa, S. S. Washburne, D. R. M. Walton, J. Organomet. Chem. 186 (1980) 309.
- ⁸⁾ N. Wiberg, M. Link, Chem. Ber., in Vorbereitung
- 9) N. Wiberg, Ch.-K. Kim, Chem. Ber. 119 (1986) 2966.
- ¹⁰⁾ N. Wiberg, G. Preiner, G. Wagner, H. Köpf, G. Fischer, Z. Naturforsch., Teil B, 42 (1987) 1055
- ¹¹⁾ Die Ausbeute an 31 steigt auf Kosten der Ausbeute an 32 erwartungsgemäß mit wachsendem DMB-Überschuß; Temperaturerhöhgung führt zur Zunahme der Ausbeuteverhältnisse 30:31 sowie 31:32¹²⁾.
- ¹²⁾ N. Wiberg, G. Fischer und M. Link, Veröffentlichung in Vorbereitung.
- ¹³⁾ N. Wiberg, G. Preiner, G. Wagner, H. Köpf, Z. Naturforsch., Teil B, 42 (1987) 1062.
- ¹⁴⁾ Unter besonderen Bedingungen (z. B. sperriges R, unpolares Solvens) könnte zudem LiX ausfallen, was dann wiederum eine Erhöhung der Konzentration des Silaethens und damit auch der Zersetzungsgeschwindigkeit von R'Li zur Folge hätte.
- ¹⁵⁾ N. Wiberg, H. Köpf, J. Organomet. Chem. 315 (1986) 9
- ¹⁶⁾ N. Wiberg, G. Preiner, O. Schieda, Chem. Ber. 114 (1981) 3518. ¹⁷⁾ Die aus 1 bzw. 3 mit DMB erhältlichen En-Reaktionsprodukte bilden mit 1 bzw. 3 [2 + 4]-Cyclofolgeprodukte (vgl. Gl. 5c). Die relative, auf die En-Reaktion bezogene Geschwindigkeit dieser Cycloaddition nimmt beim Übergang von 1 nach 3 stark zu.
- ¹⁸⁾ N. Wiberg, Ch.-K. Kim, Chem. Ber. 119 (1986) 2980.
- ¹⁹⁾ Die Ausbeuten der X/R-Austauschreaktion steigen mit dem Verhältnis der Geschwindigkeit der Reaktion von (Me₃Si)₂(Ph₂XSi)-CLi + RLi (X/R-Austausch) und der Geschwindigkeit der Reaktion von (Me₃Si)₂(Ph₂XSi)CBr + RLi (Br/Li-Austausch
- ²⁰⁾ N. Wiberg, K. Schurz, J. Organomet. Chem. 341 (1988) 145; Chem. Ber. 121 (1988) 581. L. Chan, E. G. Rochow, J. Organomet. Chem. 9 (1966) 231.
- 21)
- ²²⁾ F. Metras, J. Valade, Bull. Soc. Chim. Fr. 1965, 1423.

[242/88]